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CHAPTER ONE

INTRODUCTION

The purpose of this document is to describe progress of research to refine and
evaluate a new multicomputing system philosophy in a VHSIC technology based
multicomputer system during the period March 16, 1989 to December 31, 1990. This
research supports ongoing investigations being conducted at NASA Langley Research
Center concerning the insertion of VHSIC technology to potential future aerospace
applications. This is the year ending report for calendar year 1990 on the research
performed under Cooperative Agreement NCC1-136.

During the past four years, the authors and colleagues have conducted research
concerning the development of strategies for concurrent processing of complex
algorithms. A significant result of this work has been the development of a
multicomputer operating strategy for executing large-grained, decision-free algorithms
on data flow architectures. The operating strategy is expressed as a model for
concurrent processing called ATAMM for Algorithm To Architecture Mapping Model
[1, 2]. The model is significant because it identifies the control dialogue and data
flow required to implement a decomposed algorithm in a data flow architecture, and

because it provides a context for analytically predicting system time performance.



The focus of the present research is to develop and evaluate an ATAMM
Multicomputer Operating System (AMOS) for use in a VHSIC multicomputer
architecture [3). The target system is the Advanced Development Model (ADM) as
shown in Figure 1 which was developed by the Air Force at Westinghouse Electric
Corporation. The ADM system consists of four MIL-STD-1750A processors
interconnected by a PI bus and an IEEE 488 bus. The interface of the ADM system
with the external world is carried out by an unit called 1553B. In the testbed, a
Microvax II is used for initialization and debugging of processors and an IBM PC/386
is used for input and output activities. The ADM system is to operate as a
multicomputer environment for execution of complex decomposed algorithms such as
are found in command, control and signal processing applications. A detailed
description of the ADM system will be presented in Chapter Four.

During the report period, the ATAMM Multicomputer Operating System for
the ADM was defined and a detailed description of the operating system was delivered
to Westinghouse for implementation. The development of a set of software support
tools for the ADM system was also initiated. Future work will include installation of
AMOS on the ADM, and then testing and evaluation of the complete system. The
purpose of this report is to document the specification of AMOS for ADM. In
Chapter Two, the ATAMM model is reviewed and the performance of algorithms
executing under the ATAMM rules is presented. In Chapter Three, enhancements to
ATAMM developed for the ADM implementation of AMOS are described. Included

are descriptions for the strategies for real-time, on line performance control and fault



tolerance. The detailed specification for AMOS and input/output communication
software are presented in Chapter Four. In Chapter Five, three software support tools
developed for performance analysis in the ATAMM environment are described. The
report concludes with a summary of the status of research in Chapter Six.

The use of brand names in this report is for completeness, and does not

indicate NASA endorsement.
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CHAPTER TWO
THE ATAMM MODEL
2.0 Introduction
The ATAMM model is reviewed briefly in this chapter. The definition of
ATAMM is presented and illustrated by example in Section 2.1. In Section 2.2, the
time performance of algorithms executing according to the ATAMM rules described.
Strategies are developed for generating operating conditions for predictable

performance based on the number of available computing resources.

2.1 Model Description

The ATAMM model consists of a set of Petri Net marked graphs which
incorporates general specifications of communication and processing associated with
the implementation of a decomposed, large-grained algorithm in a data-flow
architecture. In this section, the execution of a computational problem is represented
by the ATAMM model. Some familiarity with Petri Nets and marked graphs is
assumed [4]. A more detailed description of the ATAMM model and its
characteristics are found in [5, 6].

An algorithm marked graph (AMG) is a marked graph which represents a
specific algorithm decomposition. Transitions and places are represented as nodes

(vertices) and directed edges respectively. Vertices of the algorithm marked graph are



in a one-to-one correspondence with each occurrence of an algorithm operation. The
transition times represent the computational times of the respective algorithm
operations. The algorithm marked graph contains an edge (i, j) directed from vertex i
to vertex j if the output of vertex i is an input for vertex j. Edge (i, j) is marked with
a token if an output from vertex i is available as an input to vertex j. Source
transitions and sink transitions for input and output signals are represented as squares.

To illustrate the construction of an algorithm marked graph, consider the
problem of computing the output of a discrete linear, time invariant system given a
sequence of inputs to the system. Let the system be described by the state equation

x(k) = Ax(k-1) + Bu(k)
and the output equation

y(k) = Cx(k),

where x is a p-vector, u is a m-vector, and y is a r-vector. The algorithm operations
are defined as matrix multiplication and vector addition, and the natural algorithm
decomposition resulting from the state equation description is selected. The algorithm
marked graph for this decomposed algorithm is shown in Figure 2. The initial
marking indicates that initial condition data are available.

The algorithm marked graph is a useful tool for representing decomposed
algorithms and for displaying data flow within an algorithm. However, the algorithm
marked graph does not display procedures that a computing structure must manifest in
order to perform the computing task. In addition, the issues of control, time

performance, and resource management are not apparent in this graph. These



important aspects of concurrent processing are included in the ATAMM model
through the definition of two additional graphs. These additional graphs are defined in
the following.

The node marked graph (NMG) is a Petri Net representation of the
performance of an algorithm operation by a functional unit. Three primary activities,
reading of input data from global memory, processing of input data to compute output
data, and writing of output data to global memory, are represented as transitions
(vertices) in the NMG. Data and control flow paths are represented as places (edges),
and the presence of signals is notated by tokens marking appropriate edges. The
conditions for firing the process and write transitions of the NMG are as defined for a
general Petri Net, while the read transition has one additional condition for firing. In
addition to having a token present on each incoming signal edge, a functional unit
must be available in a queue of available functional units for assignment to the
algorithm operation before the read node can fire. Once assigned, the functional unit
is used to implement the read, process, and write operations before being returned to a
queue of available functional units. The initial marking for an NMG consists of a
single token in the Process Ready place. The NMG model is shown in Figure 3.

A computational marked graph (CMG) is constructed from the AMG and the
NMG by the following rules:

1) Source and sink nodes in the algorithm marked graph
are represented by source and sink nodes in the

CMG.



2) Nodes corresponding to algorithm operations in the
algorithm marked graph are represented by NMGs in
the CMG.
3) Edges in the algorithm marked graph are represented

by edge pairs, one forward directed for data flow

and one backward directed for control flow, in the

CMG.

A forward directed edge goes from a predecessor write transition to a successor
read or sink transition. Forward edges are also shown as part of the NMG in Figure 2
where they are labeled OF and IF edges of the predecessor and successor transitions
respectively. A backward directed edge goes from a successor read transition to a
predecessor read or source transition. Backward edges are also shown as part of the
NMG where they are labeled OE and IE edges of predecessor and successor
transitions respectively. The initial marking for the edge pair consists of a single
token in the forward directed place if data are available, or a single token in the
backward directed place if data are not available. In order to illustrate the
construction of a computational marked graph, the CMG corresponding to the
algorithm marked graph of Figure 1 is shown in Figure 4.

The complete ATAMM model consists of the algorithm marked graph, the
node marked graph, and the computational marked graph. A pictorial display of the

components of the ATAMM model are shown in Figure 5.



Graph execution based on the ATAMM rules has several useful and important
properties [5]. Execution is live, reachable, safe, deadlock-free, and consistent [6).
Liveness indicates that all transitions in the CMG are firable from the initial marking,
whereas reachability ensures that CMG will generate an output for each input.
Safeness guarantees that output of an algorithm operation will not be overwritten
before it is picked up by a successor algorithm operation or sink. This property is a
result of including backward control places in the CMG and is necessary for safe
periodic operation. The necessary and sufficient condition for avoidance of deadlock
in the graph play is to ensure that once assigned, a functional unit always is able to
complete execution of an algorithm operation. A computation can not enter deadlock
because no read transition is executed unless the output edges of the corresponding
NMG are empty and a functional unit is available. The consistency property implies

that computations are repeated periodically when input are applied periodically.

2.2 Time Performance

In this section, the time performance of algorithms implemented in data flow
architectures according to the ATAMM rules is investigated. First, performance
measures for computing speed and throughput are defined. It is shown that the
ATAMM model is useful for analytically calculating bounds for these measures.
Then, graph play is described and used to determine resource requirements necessary
to achieve a specified time performance. Finally, the ATAMM performance plane is

defined. This diagram displays possible operating strategies with resource
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requirements as a parameter. Using this display, a system operator is able to specify

quantitatively system time performance.

2.2.1. Performance Measures

Two measures of time performance, TBIO and TBO, are defined in this
section. The performance measure TBIO (time between input and output) is the
elapsed computing time between an algorithm input and the corresponding algorithm
output. Therefore, TBIO is an indicator of computing speed. It is shown in [7] that
the algorithm imposed lower bound for TBIO, denoted TBIO;, is given by the sum of
transition times for nodes contained in the longest directed path from the input source
to the output sink in the AMG.

The performance measure TBO (time between outputs) is the elapsed
computing time between successive algorithm outputs when the AMG is operating
periodically at steady-state. Therefore, the inverse of TBO is an indicator of
throughput frequency. It is shown in [7] that the algorithm imposed lower bound for
TBO is given by the largest time per token of all directed circuits in the CMG. A
second bound on TBO is imposed by the availability of resources. It is shown in [6]
that the resource imposed lower bound for TBO is TCE/R where TCE (total
computing time) is the sum of transition times for all nodes in the AMG and R is the
number of available functional units. The lower bound for TBO, denoted TBOy3, is

the greater of the algorithm bound and the resource bound.
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To illustrate the calculation of these performance bounds, consider as an
example the AMG shown in Figure 6 and the corresponding CMG shown in Figure 7.
The AMG contains four directed paths from the input source to the output sink. These
paths, identified by included transitions, are (1, 2, 6, 7), (1, 3, 6, 7), (1, 4,6,7) and (1,
5, 6, 7). The sum of transition times of nodes in each path is 7 so that TBIO ; = 7.
The largest time per token of any directed circuit in the CMG is 2. There are several
directed circuits which yield this result; one such directed circuit is the circuit
containing the read, process and write transitions of node 6 and the read transition of

node 7. Therefore, TBO,z = 2.

2.2.2 Graph Play and Resource Requirements

Two diagrams which display graph play and are useful for determining the
number of resources needed to achieve specified performance measures are defined
next. The SGP (single graph play) diagram is a diagram which displays the execution
of each node of the AMG as a function of time. The diagram is constructed for a
single input data packet under the assumption that unlimited resources are available to
play the graph. Node activity is denoted by a solid line and the symbols (<, >) are
used to indicate the beginning and end of execution. When several nodes are active at
the same time, lines indicating node activity are stacked vertically so that computing
concurrency is apparent. The SGP diagram for the AMG of Figure 6 is shown in

Figure 8.
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The resource requirements to execute a single data packet are obtained by
counting the number of active nodes during each time interval in the SGP diagram.
The peak resource requirement is denoted by R, and represents the minimum number
of resources necessary to achieve operation at TBIO = TBIO, 5. For the AMG in
Figure 6, R, = 4 is the minimum number of resources necessary to execute the graph
with TBIO = TBIO,; = 7.

The TGP (total graph play) diagram is a diagram which displays the execution
of each graph node when the graph is operating periodically in steady-state with
period TBO. As with SGP, the diagram is constructed under the assumption that
unlimited resources are available to play the graph, and a different diagram results for
each value of TBO. The TGP diagram is drawn using information from SGP. SGP is
divided into segments of width TBO, and these segments are overlaid to form TGP.
Each segment from SGP represents a new input data packet. Data packets are
numbered sequentially so that the packet numbered i+1 is the data packet which is
input to the graph TBO time units after the packet numbered i. To illustrate the
construction of this diagram, TGP for the AMG of Figure 6 is shown in Figure 9.

The resource requirements to execute multiple data packets injected with period
TBO are obtained by counting the number of active nodes during each time interval in
the TGP diagram. The peak resource requirement necessary to execute the graph
periodically with period greater than or equal to TBO is denoted by Ry Ry is
determined by finding the largest resource requirement in all TGP diagrams drawn for

injection intervals greater than or equal to TBO. For example, the TGP diagram
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drawn for TBO = TBO, = 2 shown in Figure 9 indicates that a minimum of 7
resources is required. If this same TGP diagram is drawn for all values of TBO > 2,
it can be shown that the required number of resources remains less than 7. Therefore,

R_,, to achieve TBO = 2 for the AMG shown in Figure 6 is equal to 7.

2.2.3. ATAMM Performance Plane

For a given algorithm decomposition, the parameters TBIO, TBO and R define
an operating point for ATAMM. The display of all operating points on a graph of
TBO versus TBIO with R indicated as a parameter is called the ATAMM performance
plane. The ATAMM performance plane, illustrated in Figure 10, is extremely useful
for selecting system operating strategies. The use of this diagram is described in this
section.

The best system performance is achieved by operating at point B where TBIO
= TBIO,; and TBO = TBO,;. The resource requirement associated with this operating
point is the value of R, computed from the TGP diagram drawn for TBIO, 5 and
TBO, ;. Operation at point B is obtained by the use of injection control as shown in
Figure 11. Injection control is a control procedure which limits the maximum rate at
which new input data packets can be injected. When presented with continuously
available input data packets, the natural behavior of a data flow architecture results in
operation where data packets are accepted as rapidly as available resources and the
input transition permit. This leads to operation at a steady-state operating point where

TBO = TBO,; but TBIO > TBIO ;. This occurs because the pipeline from input to
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output becomes congested with extra data packets which must wait for free resources
to be processed. Injection control eliminates data packet congestion and thus preserves
operation at TBIO, ;.

When there are not sufficient resources to operate at point B, the operating
point must be shifted to a new location having a smaller resource requirement. Using
injection control procedures, it is possible to shift the operating point vertically along
line B-V. This strategy preserves TBIO while degrading throughput performance.
Such a strategy is useful for real-time control and signal processing applications where
maintaining high computing speed is very important. Operating points on line B-V for
lower resource requirements are calculated from the TGP diagram by increasing TBO
until the number of active nodes in any time interval decreases by one from the
previous operating point. These operating points are implemented by adjusting the
minimum input injection control interval. As an example, consider the AMG shown
in Figure 6. Operation at TBIO = 7 and TBO = 2 requires 7 resources. By increasing
TBO to 3, the number of required resources decreases to 5. This can be observed by
increasing the value of TBO in the TGP diagram of Figure 9 until the number of
concurrently active nodes decreases. Increasing TBO to S further reduces the resource
requirement to 4 resources. These operating points are displayed in the ATAMM
performance plane as shown in Figure 12.

It is also possible to shift the operating point horizontally along the line B-H to
reduce resource requirements. This strategy preserves TBO while degrading

computing speed performance. Such a strategy is useful for number crunching



15

applications where maintaining throughput is important. Operating points on line B-H
for lower resource requirements are obtained by adding control edges to the original
AMG. A control edge is an AMG place which imposes a precedence relation among
two transitions, but does not imply data dependency. When such an edge is added to
an AMG so that the longest directed path from the input source to the output sink is
increased, the resulting new graph has an increased TBIO value but still describes the
same algorithm.

The addition of a control edge can create new directed circuits having
increased time per token values so that TBO is also increased. This potential problem
is avoided by adding dummy nodes to the AMG. A dummy node is an AMG
transition which implements an identity operation and requires zero computation time.
The dummy node serves as a buffer to provide additional storage for the output data
of a graph node. Implementation of a dummy node is a memory operation and thus
does not require a resource. Using the dummy node, it is possible to increase the
token count on circuits formed by adding control edges, thus preserving the value of
TBO in the original graph. Control edges and dummy nodes also can be used to
improve performance bounds and to balance resource requirements. Operating point
design using control edges and dummy nodes is explained in more detail in [8].

To illustrate shifting the operating point horizontally, consider again the AMG
shown in Figurc 6. Adding a control edge directed from node 3 to node 4 creates a
new directed path from input source to output sink which contains nodes (1, 3,4,6,

7). Therefore, TBIO,; for the new graph is equal to 8. However, the control edge
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also creates a new directed circuit containing the read, process and write transitions of
nodes 1 and 3, and the read transition of node 4. This directed circuit has a time per
token value of 3 so that TBO,; is increased to 3. The time per token value of this
circuit is reduced by adding a dummy node to the edge directed from node 1 to node
4. The new AMG and the corresponding CMG are shown in Figures 13 and 14,
respectively. A second control edge and dummy node are also added in Figure 13 for
the purpose of reducing the peak resource requirement. The SGP diagram and the
TGP diagram for TBO = 2 are shown in Figures 15. The new operating point having
TBIO = 8, TBO =2, and R = 5 is shown on the performance plane diagram in Figure
12. Also shown are additional operating points on the constant TBIO = 8 line which

are implemented by injection control as described previously.
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CHAPTER THREE
ATAMM ENHANCEMENTS

3.0 Introduction

In this chapter, enhancements to ATAMM developed for the ADM system are
presented. First, a method to control the time performance of the system based on
knowledge of the number of available processors is presented in Section 3.1. This
allows a user to specify system performance using the ATAMM performance plane
information given in Chapter 1. Then, new strategies for achieving fault tolerance in
the ADM system are described in Section 3.2. Included is the development of a
procedure for implementing triple mode redundancy (TMR) and a methodology for

dealing with processor failure during self test.

3.1. Real-Time Control Strategy

Included in AMOS for the ADM is the capability for on-line real-time control
of the system time performance. The ATAMM performance plane described in the
previous chapter displays all possible operating points, with the resource requirement
necessary to achieve the operating point shown as a parameter. A set of actual
operating points is selected by the user by identifying one operating point for each
resource number, R through 1. Each such point specifies the system time

performance, that is TBIO and TBO, for a particular number of available resources.

31
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The set of actual operating points selected in this way is compiled in a table called the
operating point table. The operating point table forms the control law for
implementing the real-time feedback control strategy for ADM. The calculation of
performance bounds and construction of the SGP, TGP and performance plane
diagrams has been automated in a software package called Design Tool. The software
is being developed to operate on IBM PC/386 compatibles in the Microsoft Windows
environment.

AMOS is designed to monitor continuously the number of available functional
units. At any instant, the number of available resources is used to identify an
operating point through the operating point table. If the number of resources changes,
then a corresponding new operating point is identified. System operation at the new
operating point is achieved by adjusting the injection control time interval, and by
modification of the AMG through the addition or deletion of control edges and
dummy nodes.

In the ADM system, the operating system counts the number of functional units
available and communicates this number to the IBM PC/386 where the operating point
table is stored. Using a simple table look-up procedure, an operating point is
identified and the graph structure and injection rate necessary to realize this operation
are specified. This information is communicated back to the operating system where
the graph structure is changed and the input rate adjusted. Therefore, the entire
feedback control process is integrated with the ATAMM operating system. The

control methodology is shown in Figure 16.
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3.2 Fault Tolerant Strategies

The present section is intended to summarize the Fault-Tolerant Strategies used
to enhance the ATAMM strategy. The section is divided into two subsections: TMR
Implementation and Fault Detection & Recovery.

The TMR implementation in ATAMM is performed at the graph level. The
transformation of a graph to incorporate the TMR strategy is explained in detail. Fault

detection and recovery are outlined in the last subsection.

3.2.1 TMR Implementation

TMR (Triple Modular Redundancy) is one of many Fault-Detection-and-
Correction techniques that can be applied in the design of a reliable computing system.
The philosophy behind TMR is to triplicate a given work or task to detect and correct
faults. The detection is based on the comparison of the results of the multiple
outcomes or outputs of the triplicated task. The correction of the fault is
accomplished by selecting one out of the three outputs as the correct one. If there is
an error in any of the three sets, the other two will be identical, hence the latter are
assumed to be correct. This scheme is used to detect up to two faults but it can only
correct one.

The implementation of TMR in ATAMM is achieved at the graph level. A
graph without the application of TMR is said to be a simplex graph. A simplex graph
is any normal graph defined to be executed under the rules of ATAMM. A TMR

graph is a graph that implements the TMR strategy in all of its nodes. A TMR graph
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can be expressed as a transformation of a simplex graph. A simplex graph can be
transformed into a TMR graph by triplicating every node in it and by triplicating every
output edge in every resultant node. The distinction of the three nodes per original
node that are created with this process is made through the use of colors. The first
node is labelled red, the second green, and the third blue. To refer to a given node in
a TMR graph it is necessary to use not only its task number but its color. After the
triplication is finished, the second operation is the connection of the output edges to
their corresponding nodes. Let us assume nodes A and B are connected as shown in
Figure 17(a). After the transformation there will be a connection from red node A to
all three nodes B, another from green node A to all three nodes B and lastly one from
blue node A to all three nodes B. The resulting TMR graph is shown in Figure 17(b).
The procedure explained above can be expressed mathematically in the
following manner. A given simplex graph with n number of combined nodes, sources

and sinks has square connection matrix for the AMG

AMG =[c,] ij = 1, .y 1

where
¢y = 1 if there is a directed edge from the it
node to the " node.

c; = 0 otherwise.
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A vector of m square matrices is

(M1 M2 M3 ... Mm]

In general, the connection matrix for a CMG is defined as the sum of two
matrices, EC and IC. These two matrices are: the external connection of the nodes of
the AMG and the internal connection of the AMG. These two matrices can only be
defined in terms of the NMG. The connection matrix of the NMG that is being used
in the definition of ATAMM can now be defined. The NMG is composed of three
transitions, namely: read, process and write. The connection matrix that defines the

internal connection of these transitions is

NMG = [c] i, j = 1,...3

where
c; = 1 for the pairs (i, j) = (1, 2), (2, 3), G, 1),

¢; = 0 otherwise.

where 1 corresponds to the read transition, 2 to the process transition and 3 to the
write transition.
Once the NMG is given, the external connection matrix EC can be defined. If

nodes A has a directed edge to node B in an AMG, then the write transition of node A
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has a directed edge to the read transition of node B. Also there is a directed edge
from the read transition of node B to the read transition of node A. Therefore, the

external connection matrix EC is defined as

EC =[00 II" [AMG] [I 0 0] + [I1 0 0]"TAMG]'[I 0 0]

which is a 3n x 3n matrix where n is the number of nodes, sinks, and sources in the
AMG. Iis a n x n identity matrix and 0 is a2 n x n zero matrix.

The internal connection matrix IC is defined as follows

IC=[100][I][0T0] +
[0 10) (1[0 01] +

[0 0 I"(T](X 0 0]

then
CMG =EC +IC
or
r A
| AMGT I 0o |
CMG = | 0 0 I |
| AMG+I 0 0o |
L d
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where CMG is a 3n x 3n connection matrix and n is the number of nodes, sinks, and
sources in the AMG.
The connection matrix AMG, of a TMR graph is expressed in terms of the

connection matrix AMG of a simplex graph. This is

AMG, = [IIT]" AMG (I11]

where AMG,; is a 3n x 3n connection matrix. The CMG connection matrix of a TMR

graph is

AMG,” I
CMG =

>

MG,+I 0

[
]
<
= I —
| |

Each colored node (red, green and blue) reads three sets of the original simplex
data sets. Each of these data sets comes from a colored node from the predecessor
nodes. The first operation that a node has to execute is the comparison of the three
data sets. This comparison is performed by a unit called voter. The voter compares
all data sets and determines if there is any error on any of the sets. The output of the
voter is divided in two parts. The first part is a data set to be used in the task of the
node. The second part corresponds to an error report. There are three possible

outcomes in the error report, they are: there is no error in the data sets; there is a
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recoverable error in the data sets; and there is a fatal error. The first refers to the case
where there is no difference among all three data sets. Any data set is then used as
input to the node. The second error refers to the case where there was one set in
disagreement with the other two. Any data set of the two in agreement is then used as
the input set to the node. The color of the node that produced the erroneous data can
be part of the error output. The third error refers to the case where there were not two
data sets in agreement. That is, there is more than one error. In this instance any data
set can be used since there is no way to determine which is in error or which is
correct. This is a fatal error since this error propagates erroneous data throughout the
graph. This error should flag an exemption to the operating system to take a

corrective action.

3.2.2 Fault Detection and Recovery

Fault detection in ATAMM can be implemented at the graph manager [3] level.
The graph manager is the part of the implementation of ATAMM that runs the graph.
It scans the graph seeking enabled nodes and assigns resources that execute them. The
graph manager assigns a resource to a computing node. The resource executes the
given operation. After this resource has finished and delivered the output data to the
appropriate data edges, the resource can be tested before it returns to be available to
the system. This can be a self-test of the resource. The result of this test is then
passed to the graph manager. Based on the test result, a decision is made whether the

resource is able to continue being used by the system or has to be discarded from it.
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Recovery is fulfilled by discarding the resource that reported an error during its
test. The resource is not allowed back into the system by not been available for
assignment by the graph manager. It is clear that the type of fault that can be handled
is the one that can be detected by the resource itself. This type of fault includes faults
in the subsystems of the resources that do not directly intervene in the execution of
instructions, e.g., ALU operations, I/O operations, etc. This summarizes the fault

detection and recovery of ATAMM.
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CHAPTER FOUR
ADM IMPLEMENTATION OF ATAMM

4.0 Introduction

In this chapter, the adaptation of the ATAMM model to the ADM system is
described. The architecture of the ADM system is discussed in Section 4.1. In
Section 4.2, the major components of the ATAMM Multicomputer Operating System
(AMOS) are identified and AMOS operations are explained using a state diagram
description. Then the software of 1553B and IBM PC/386 are described in Section

4.3 for input/output communication and real-time control.

4.1. ADM Architecture

A VHSIC ATAMM data flow architecture, called the Advanced Development
Model (ADM), is under development [3]. For convenience, the ADM architecture is
shown again in Figure 18. This system consists of four identical VHSIC 1750A
processors which communicate over a dual PI bus. Each 1750A has a physical
memory of size 256K which is used for storing all codes and data. Also connected to
the PI bus is a 1553B which serves as a gateway for input and output data flow from
an IBM PC/386. There are one 1553 communication module and one 1750A in a
1553B. The total physical memory size is 128K. Communications over the PI bus

are accomplished by broadcasting and use of direct memory access and requires
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exclusive control over a single PI bus semaphore. A processor or 1553B must grab
the PI bus semaphore before communicating over the PI bus. All processors also
communicate over an IEEE-488 bus to a Microvax computer which is used to
download application programs and files for debugging activities. The 1553B module
is connected to the IBM PC/386 by a single line communication link. Data are
transferred between the 1553B module and the IBM PC/386 by synchronous
communications. It is possible to perform logical operations in 1553B and
communications over the PI bus and communication link concurrently. In addition to
input and output, the communication link is used for fault injection, fault recovery,
modification of the algorithm graph in real-time, and passing information back to IBM
PC/386 for testing purposes. The 1553B acts as a source and sink for the algorithm
marked graph and thus is capable of controlling the input injection rate to the 1750A

processors and collecting output from the PI bus.

4.2 AMOS Description

The ATAMM Multicomputer Operating System (AMOS) is the operating
system of the ADM hardware and its operation is based upon ATAMM rules. First,
fundamental principles of AMOS are described. Second, a detailed description of
AMOS data structures are presented. Third, an example is used to illustrate the
operations of the operating system. Finally, the operations performed by a functional

unit are elaborated.



4.2.1 Operating System Principles

AMOS is the logical interface among three components, the AMG, the graph
manager, and a resource queue consisting of a set of identical functional units or
resources as shown in Figure 19. The AMG represents the computational problem.
The graph manager updates and monitors the status of the algorithm marked graph.
When an AMG node is enabled, the graph manager assigns a functional unit from the
queue of available functional units to perform the corresponding algorithm operation.
The functional unit is the component which executes all three node marked graph
(NMG) transitions of each AMG node. The functional unit communicates with the
graph manager to update the status of the AMG and other functional units to read and
write data. The graph manager and functional units communicate by the PI bus
through a resident operating system called Modified Kernel Operating System.

Each of the 1750A is a resource or functional unit of the AMOS. The graph
manager and AMG also are distributed among all functional units. All the 1750As
maintain an identical copy of the graph manager, MKOS, AMG, application codes,
and data for the AMG nodes. The distribution of system components on the ADM is
shown pictorially in Figure 20. However, only the graph manager residing in the
functional unit on top of the queue of available functional units can fire an enabled
AMG node. In order to ensure that all functional units have an identical copy of the
graph data structure, the graph manager of a functional unit grabs the PI bus
semaphore before changing the graph data structure. A broadcast is issued to all other

1750As and the 1553B to update the respective graph data structures. After waiting
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for a predetermined time interval to allow the updating to complete, the functional unit
releases the PI bus for other communication. This distribution of activities has the
advantage of increasing the number of functional units in the system and at the same
time improving the potential for achieving a higher degree of fault tolerance to
functional unit failure.

The operation of a functional unit is represented by the state diagram shown in
Figure 21. Initially, all functional units awake in the state labeled Idle. A functional
unit remains in this state until its identifier appears at the top of the resource queue.
When this occurs, the functional unit undergoes a state transition to the Examine
Graph state. In this state, the functional unit actively monitors the status of the AMG
until an algorithm node becomes enabled. When an enabled algorithm node is
identified, the functional unit assigns itself to perform the algorithm operation, grabs
the PI bus, and undergoes another state transition to the Execute state. During this
state transition, the functional unit identifier is removed from the top of the resource
queue and a bus communication F announcing that an algorithm operation has been
initiated is broadcast on the bus. Then, the functional unit releases the PI bus. The
functional unit remains in the Execute state until the algorithm operation is complete.
At the completion of the algorithm operation, the functional unit grabs the PI bus
semaphore and initiates a second bus communication D which includes a broadcast of
the algorithm operation output data to all other functional unit global memories. At
this time the functional unit again changes state to the Self Test state and releases the

PI bus. The Self Test state corresponds to a diagnostic check of the functional unit.
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After a successful self test, the functional unit returns to the initial Idle state. This
state transition is accompanied by a grabbing of the PI bus semaphore, a third bus
broadcast communication R announcing that the functional unit identifier should be
returned to the bottom of the resource queue, and a release of PI bus. While in any
state, the functional unit may be interrupted to update its graph data structures and

resource queues following F, D, or R broadcasts from other functional units.

4.2.2 Data Structures

The data structures of AMOS consist of two arrays, BLOCKS and EDGES,
that hold all of the information regarding nodes and edges of an algorithm marked
graph. Also, there is a table, PRIORITY, that holds the precedence order of the
nodes of the algorithm graph. In addition, there are four queues, QUEUE, WORK,
DIAG, and RECOV that hold information about current status of functional units. The
QUEUE is a FIFO queue of available and unassigned functional units, WORK is a
pool of assigned functional units, DIAG is a pool of functional units in a diagnostic
state, and RECOV is a pool of functional units to be recovered by the system. In this
section a detailed description of these data structures are presented.

Every functional unit (1750As) has an instance of AMOS. After every F, D, or
R events, the graph and resource structures are updated by the individual 1750As
separately. The variables BLOCKS, EDGES, PRIORITY, QUEUE, and etc. are

defined as arrays. Although these variables are defined as arrays, they are treated as
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linked lists, i.e., the linked list is implemented using array indices. The linked list
structure reflects the dynamic structure inherent in this architecture model.

A block is a node of AMG. In TMR mode, it is a set of three colored-nodes,
red, green, and blue and in SIMPLEX mode a set of only one node. Its primary use is
in TMR mode. FIRING is a global variable that holds the identification code (ID) of
the block being fired. It is used to ensure that all of the colored-nodes of the block
are fired before firing the next block. If there is no block being fired, then it is set to
zero. MODE, a global variable, indicates the mode of operation and is initially set by
the user to SIMPLEX, 1, or TMR, 3. In TMR mode, when the number of functional
units drops to less than three, AMOS will change the value of MODE to SIMPLEX to
reflect the decrease in the number of functioning resources. BLOCKS is an array of N
elements with components BLOCKS[j], the range of j is from 0 to N, where N
represents the number of nodes in the AMG graph. EDGES is an array of M elements
with components EDGES[k], the range of k is from 0 to M, where M represents total
number of edges in the AMG graph. QUEUE, WORK, DIAG, and RECOV are arrays
of size equal to the maximum number of available functional units at the start up.
These arrays are described in the following paragraphs.

BLOCKS: BLOCKS]Ij] is an element of the array BLOCKS and holds all information
about a block. BLOCKSJj] consists of nine variables which are explained below.
FUNCTION_ID is an integer representing the task ID or a pointer pointing to the
application program. ID is a three element array which holds the identification code

of functional units assigned to the colored-nodes of the block. ID is used to keep track
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of functional units for future recovery purposes. BUSY_CTR is a counter that holds
the number of functional units working on the block. It is incremented after every
F-transition command and decremented after every D-transition command. Another
variable, DONE_CTR is a counter that holds the number of functional units released
from the block. It is used to check if a block can be enabled. It is set to zero when
the block is enabled and is incremented by every D-transition. ENABLE_CTR is a
counter that holds the number of enabled colored-nodes that have not yet fired. When
the block is firable the ENABLE_CTR is set to the MODE of operation. It is
decremented after every colored-node of a block is fired (F-transition). INPUTS is an
array of pointers having components INPUTS[i], where the range of i is from 0 to 2.
INPUTS[i] is the header pointer pointing to a linked list of input (incoming data)
edges to the ith colored-node. Another variable, OUTPUTS is an array of pointers
having components OUTPUTSi], where the range of i is from 0 to 2. OUTPUTSIi]
is the header pointer pointing to a linked list of output (outgoing data) edges
originating from the ith colored-node. (It implicitly represents all backward control
edges from all successor nodes to this node.) Figure 22 is a pictorial representation of
these two linked lists. IN_SUMMARY is an array of integers with components
IN_SUMMARY(i], where the range of i is from 0 to 2. IN_SUMMARY]i] is a
summary of INPUTS[i] and is an integer having a value equal to the number of input
edges of the ith colored-node when all have data and is zero otherwise.
OUT_SUMMARY is an array of integers with components OUT_SUMMARY][i],

where the range of i is from 0 to 2. OUT_SUMMARY([i] is a summary of
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OUTPUTS[i] and is an integer having value equal to the number of outgoing edges
originating from the ith colored-node when all are empty and is zero otherwise. A
block is enabled under the following conditions:

1. DONE_CTR = MODE,

2. All IN SUMMARY][i]s, i = 0..2, are non-zero, and

3. All OUT_SUMMARY]i]s, i = 0..2, are non-zero.
EDGES: EDGES[K] is an element of the array EDGES and holds all information
about an edge. EDGES[Kk] consists of eleven variables which are described in the
following. EDGE_QUEUE is a circular linked list that holds addresses of the memory
locations where the data are stored. The addresses are accessible to the INITIAL and
TERMINAL blocks to write and read data, respectively. For future recovery purposes
the length of the queue, L, is one more than the SEGMENTS or, number of Dummy
nodes plus two. Structure of each element of the EDGE_QUEUE consists of three
elements; a) LABEL is a pointer to the beginning of the data container, b) ID holds
the identification code of the functional unit which wrote the data into that data
container, and ¢) NEXT is a pointer to the next element of the EDGE_QUEUE.
SEGMENTS is an integer equal to the number of dummy nodes on the edge plus one.
Tt is used to check capacity of the EDGE_QUEUE of the edge. If SEGMENTS is
equal to ITEMS, then EDGE_QUEUE is full and no more data can be written into it.
ITEMS is a counter indicating the number of data items on the edge. The range of
ITEMS is from zero to SEGMENTS. It is incremented, by the INITIAL node, every

time new data are written on the edge. It is decremented, by the TERMINAL node,



50
every time OUTPUT_WIDTH becomes zero. INITIAL holds the block number of the

origin of the edge. It is used to update the graph and can also be used to check the
integrity of the graph. TERMINAL holds the block number of the destination of the
edge. It is used to update the graph. EDGE_COLOR indicates the color of the
INITIAL node of the edge. It is also used to update the graph. The value of color is
identified as 1 for red, 2 for green, and 3 for blue. OUTPUT_WIDTH, a counter, is
set to MODE when its present value is zero and ITEMS is non-zero. It is
decremented by one for each F-transition of the TERMINAL block.
TERMINAL_PTR is a pointer to the element of the EDGE_QUEUE where the
TERMINAL node reads data. It is updated every time OUTPUT_WIDTH becomes
zero. Updating TERMINAL_PTR means that it should be pointing to the next
element of the EDGE_QUEUE. Updating is performed by the TERMINAL node.
INITIAL_PTR is a pointer to the element of the EDGE_QUEUE where the INITIAL
node writes data. It is updated every time an output is written to the edge. Updating
INITIAL_PTR means that it should be pointing to the next element of the
EDGE_QUEUE. Updating is performed by the INITIAL node. NEXT_INPUT is a
pointer to the next edge which is an input edge to the TERMINAL block.
NEXT_OUTPUT is a pointer to the next edge which is an output edge of the INITIAL
block. NEXT_INPUT and NEXT_OUTPUT are used to examine all of the input and
output edges of a block, respectively.

QUEUE: QUEUE is a FIFO queue holding information about available and

unassigned functional units. Each element of the QUEUE is a record of three
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components ID, COLOR, and NEXT. ID holds the identification code of an available

functional unit. COLOR is a variable containing the color of the colored-node of the
enabled block that the functional unit will process. COLOR carries relevant
information only when it belongs to one of the top MODE elements of the QUEUE.
The COLOR value is assigned according to the position of the functional unit in the
top of the QUEUE; first red, second green, and third blue. NEXT holds the index of
the next element of the QUEUE. It is used to treat QUEUE as a linked list. If
NEXT is zero, then there are no more elements in the list. The first element of
QUEUE is used as a dummy head node of the linked list and to keep track of content
of the array. Note that the COLOR field of the first element holds the number of
functional units in the array.

WORK, DIAG: WORK and DIAG have the same structure as QUEUE but are treated

differently. WORK is a pool holding identification codes of all functional units which
have been processing nodes. DIAG is a pool holding IDs of functional units which
are in a diagnostic state.

PRIORITY: It is an array holding block numbers. The position in the array
determines the block’s priority. The block at the first element is the block with the

highest priority in the graph.

4.2.3 Example
This example is provided to give more insight to the data structures of AMOS.

Figure 23 is part of a graph considered for this example. In this example, the focus is
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on the node labeled E and all of the changes regarding these nodes are depicted in the
following figures. The mode of operation is SIMPLEX. Figure 24 is a pictorial
representation of the data structure and contents of QUEUE, WORK, DIAG, EDGES,
and BLOCKS. The initial contents of EDGES[i], the range of i is from 0 to 3, are
shown in Figure 25. Figure 26 depicts the structure of EDGE_QUEUEs of all the
edges. Note that the edge from E to C has a dummy node and thus the length of its
EDGE_QUEUE is one more than other edges. The read and write pointers of the
edges are also shown in this figure. The initial contents of block E are shown in
Figure 27. When block E is enabled, the ENABLE_CTR is set to the MODE and
IN_SUMMARY is cleared as shown in Figure 28. The functional unit assigned to the
block E is transferred from the QUEUE to WORK and starts reading inputs to the
block E. After reading the input on the AE edge, ITEMS of AE edge is decremented
and the read pointer of the block E concerning this edge, E_Read, is advanced. The
NEXT _INPUT field of AE edge provides the block E with the information about next
input to the block as in Figure 29. After reading the input on the BE edge, ITEMS of
BE edge is decremented and the read pointer of the block E concerning this edge,
E_Read, is advanced. The NEXT_INPUT field of BE edge provides the block E with
the information about next input to the block. The value of that pointer for this graph
is now Nil indicating the end of reading process for the block E as shown in Figure
30. While processing the application program as described in Figure 31, there are no
changes in the data structure of block E. After writing to edge ED, ITEMS of ED

edge is incremented. The NEXT_OUTPUT field of ED edge provides the block E
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with information about next output edge of the block. Also the write pointer of the
ED edge, E_Write, is advanced so that the block E can write to the new place next
time as shown in Figure 32. After writing to edge EC, ITEMS of EC edge is
incremented. Also the write pointer of the EC edge, E_Write, is advanced so that the
block E can write to the new place next time. The NEXT_OUTPUT field of EC edge
provides the block E with information about next output edge of the block. A pointer
with a value of Nil indicates the end of the process. At this point, the graph is
updated before broadcasting as described in Figure 33. After writing the output data
and broadcasting the updated graph, the functional unit migrates from the WORK to
DIAG to perform a self test. Note that the DONE_CTR is set to the MODE of

operation as in Figure 34.

4.2.4 Functional Unit Operations

Every functional unit has an instance of AMOS. Although every functional
unit has knowledge of status of other processors, it acts as a stand alone entity. Every
functional unit goes through a sequence of operations as shown in Figure 35. These
operations together form the states of the resource state diagram of Figure 21.
Implementation of AMOS is best understood by examining these operations of
functional units.
Idle: When in Idle, the functional unit examines the QUEUE continuously. First
QUEUE is checked to determine if there are at least as many functional units in the

QUEUE as the MODE of the system by examining QUEUE[0].ID. Second, QUEUE
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is checked to determine if QUEUE[i].ID is the same as its own ID, where the range of
i is from 0 to MODE. If the self identification is successful, the search is then made
for an enabled block based on priorities assigned to the blocks. An enabled block is
detected by examining IN_SUMMARY(i], OUT_SUMMARY(i], and the DONE_CTR.
The variables IN._SUMMARY][i] and OUT_SUMMARY]i] are, in this state, assigned
proper values by examining all input and output edges of the block. This search
continues until an enabled block is found. Having a block to execute, the functional
unit selects a colored-node, based on its position in the QUEUE, to fire. The global
variable FIRING is set to the ID of the block. After FIRING holds a valid ID, the
functional unit selects the appropriate colored-node of that block to execute and
changes state to On_Hold_Read state.

On Hold Read: While in On_Hold_Read state, the functional unit is constantly trying

to get control of a communication channel. The reason being that the functional unit
must inform all other functional units before the execution of the AMG node begins.
Duration of this state depends on the traffic and communication channel protocol.

Update and Read: After establishing a communication link, the functional unit

conducts a second search for enablement of nodes with higher priorities than the
previously enabled nodes. Selecting a node with the highest priority, the functional
unit migrates from the QUEUE to the pool of working functional units(WORK). The
variable BUSY_CTR is incremented and ENABLE_CTR is decremented. It then
updates its copy of the graph and instructs all other processors and 1553B to do the

same. This broadcast is called a F event. The communication channel is then
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released. Reading of input data begins after releasing the channel. After reading
every input, the variable OUTPUT_WIDTH of the corresponding edge is decremented.
If the current value of OUTPUT_WIDTH is zero, the pointer TERMINAL_PTR of
that edge is advanced and the variable ITEMS is decremented. In TMR mode, the
functional unit votes on the three sets of inputs and chooses the correct set for
processing.

Process: In this state, the functional unit executes the application program. To do so,
control is passed to the application program. Upon completion of the task, control is
passed back to AMOS. Duration of this state is the same as execution time of the
application program.

On_Hold Write: To write the generated outputs, the functional unit has to get control

of a communication channel. Duration of this state depends on the traffic and
communication channel protocol.

Update And Write: After establishing a communication link, the functional unit

identification is removed from the WORK queue to the diagnostics queue (DIAG).
The DONE_CTR is incremented and the BUSY_CTR is decremented. In this state the
functional unit writes the output data to the memory locations associated with the
appropriate edge. The variable ITEMS of the corresponding edge is incremented and
the pointer INITIAL_PTR of that edge is advanced. The functional unit updates its
copy of the graph and then broadcasts data and instruction to update graph structure in
other processors and 1553B. This broadcast is called a D event. If an error is

detected in the Read state, the color of the node and ID of the functional unit
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responsible for the error are sent along with the D event. The communication channel
is then released.

Test: In this state the functional unit performs a self test. Upon completion, the
functional unit requests for a channel. Duration of this state depends on the test
routine.

On Hold Update: To let the system know about its availability to undertake a task,

the functional unit needs to grab a communication channel.

Update: After establishing a communication link, the functional unit identification is
removed from the DIAG queue and placed in QUEUE, if the self test was successful.
Otherwise, it simply removes itself from the diagnostics queue. In any case, the
functional unit broadcasts the updated resource queues (this broadcast is called a R

event) and releases the communication channel.

4.3 1553B Software

Four major tasks are performed by the code of 1553B. First, communication
between 1553B and IBM PC/386 are controlled by the code of 1553B. Second, source
and sink for a computational problem are implemented in the 1553B. Third, all FDTs
(FDT stands for Fire, Data, Time) are received from 1750As and time tagged. The
format for the FDT is described in Figure 36. A binary coding is used and each FDT
is 8 words (128 bit) long. The meaning and size of binary codes of the FDT are also

described in the above figure. Fourth, the code of 1553B is used to control the time
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between successive inputs (TBI) to 1750As, to pass control words from the IBM
PC/386 to 1750As, and to pass back status information of 1750As to the IBM PC/386.
Both 1553B and IBM PC/386 have a transmit and a receive buffer. The
contents of the transmit buffer of the 1553B is written onto the receive buffer of the
IBM PC/386 periodically. Similarly, the content of the transmit buffer of the IBM
PC/386 is transmitted to the receive buffer of the 1553B at the same periodic rate.
The maximum size of the transmit and the receive buffers are 32 addresses where each
address points to a 32 word (each word is 16 bit long) data. The contents of the
transmit and the receive buffers are described in Figure 37. The transmit buffer of the
1553B and the receive buffer of the IBM PC/386 are divided in output buffer, FDT
buffer, status AMOS buffer, and status 1553 buffer. The first word of the output and
FDT buffers indicates that length of output data and the number of FDTs, respectively.
The size of the output and FDT buffers are specified during initialization depending on
the maximum requirement. The status AMOS buffer is a 32 word long buffer
indicating status of AMOS which is updated at every broadcast by 1750As. The
contents of the status 1553 buffer are an input flag, an output flag, a FDT flag, a
control flag, an error code, and an error flag. The error flag the and error code are
used to indicate overflow in either FDT or output queues in the 1553B. All other
flags are needed for handshaking purposes. A flag in transmit and receive buffers is
indicated by (T) and (R), respectively. For example, the input flag (T) of the 1553B is
representing the input flag in the transmit buffer of 1553B. The transmit buffer of the

IBM PC/386 and the receive buffer of the 1553B are organized as an input buffer, a
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control AMOS buffer, and a flag buffer. The size of the input buffer is specified

during initialization. The first word of the input buffer is an indicator for the length
of input data. Input and output queues of size 2 and a FDT queue of size 64 are
maintained for temporary storage of inputs, outputs, and FDTs. The input queue is
used to store the input after collecting it from the input buffer. The output and FDT
queues are used to store the output and FDTs before transferring them to their
respective buffers. The control AMOS buffer is 32 word long and contains commands
to 1750As. The flags contain an input flag, an output flag, a FDT flag, a control flag,
and the minimum injection interval (T). Control AMOS and T are updated by a
control block and a table containing choices for injection interval T by the IBM
PC/386 software.

Although communication between 1553B and IBM PC/386 is periodic, flags
are used to prevent overwriting on top of data which is not yet read and also reading
of the same data more than once. For every type of data, there are four flags. For
example, there are output (T), output (R) in 1553B and output (T), output (R) in AT
for the output data. The following rules for interpreting and changing these flags
ensures safeness in communication. All the flags are to be initially reset.

Transmitting Side (1553B or IBM PC/386): If flags in the transmit and the receive

buffer are the same, the receiver has picked up previous data. It is safe to place new
data into the transmit buffer. The corresponding (T) flag in the transmit buffer is

toggled to indicate to the receiver that a new data has been placed. If the (T) and (R)
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flags are not the same, the receiver has not acknowledged that the previous data was
picked up.

Receiving Side (1553B or IBM PC/386): If flags in the transmit and the receive

buffer are the same, the data in the buffer has not changed. If the corresponding (T)
and (R) flags in the receive buffer are not the same, the data in the buffer is different
from the previous one. Data is read and the corresponding (T) flag is toggled to
indicate the same to the transmitter.

As an example, suppose an algorithm output is to be sent to the PC. The
output (T) and output (R) flags are compared in the 1553B. If the flags are the same,
new output data is deposited in the output buffer of the 1553B and its output (T) flag
is toggled. In the next periodic communication, the contents of the output buffer and
the output flag (T) are transferred to its respective locations in the PC side. When
comparing the output (T) and (R) flags in PC, the two flags will be found unequal.
Hence the code in PC will be able to detect that a new output has arrived. The output
is read and the output (T) flag in the PC is toggled which will be transmitted to the
1553B as an acknowledgment.

The main routine for 1553B is a continuous loop routine consisting of three
tasks which are performed by subroutines A, B, and C. A detailed flow chart is
shown in Figure 38 (a) through (d). After an initialization process in the main routine,
a continuous loop is executed whose first step is execution of subroutine A. In
subroutine A shown in Figure 38(b), it is checked whether any information needs to be

transmitted to or received from the IBM PC/386. If the input flag in the transmit and
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the receive buffer of the 1553B are not the same (which indicates arrival of a new
input from the IBM PC/386) and the input queue (a double buffer) in the 1553B is not
full, the input from the input buffer is transferred into the input queue. After that the
input flag (T) is toggled to indicate to the IBM PC/386 that the input has been
received. Similarly, the output and FDTs are transferred from their respective queues
to buffers for transmitting to the IBM PC/386 and then their respective flags are
toggled in the transmit buffer. In case of a new control AMOS from the IBM PC/386,
PI bus is grabbed, control AMOS is copied onto status AMOS in 1553B. Then status
AMOS is broadcasted to all 1750As followed by release of the PI bus and toggling of
control flag (T) in the 1553B. Both Source and Sink are considered as node '0’ by
AMOS. If an input data packet is available in the 1553B, TBI is more than or equal
to the injection interval (T), and the algorithm is ready to accept new input (indicated
by the absence of tokens on all output edges of node ’0’ in the algorithm graph),
subroutine B is executed (Figure 38(c)). The 1553B is instructed to grab the PI bus
semaphore, update graph data structure to indicate injection of a new input, and
broadcast a D event which include input data and instruction for updating the graph
data structure. After that the FDT for the input injection is time tagged and put into
FDT queue and queue length is updated. If the FDT queue is full, an error flag and
an error code are set. Following this, the 1553B releases the PI bus and returns to the
main routine.

If an algorithm output is generated (indicated by the presence of tokens on all

the input edges of node '0’), subroutine C is executed as shown in Figure 38(c). If
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the mode of operation is TMR or duplex, a vote is taken among data on all input
edges of node '0’ to generate the final output data. A header for F event is generated
for the output. Then the PI bus is grabbed, tokens are removed from all input edges
of the node *0’, and an instruction is sent to all processors to do the same. The F
header is time tagged and put into the FDT queue. The output is stored in the double
buffer of the output queue. In case the FDT or the output queue are full, an error flag
is set and the error code is reset. Then the PI bus is released and execution is
returned to the main loop.

While in this continuous checking for communication with the IBM PC/386,
input injection, and arrival of output, the code of 1553B can jump out to a DMA
routine following a direct memory access data transfer from a 1750A. In this routine,
the header (FDT) from the graph structure is time tagged as shown in Figure 38(d). If
it is an output node (any node feeding node ’0’), the header also is stored in memory
location reserved for its color. Then the FDT is stored in the FDT queue. In case,
FDT queue is full, the error flag and the error code are set. After that the execution
control is returned to an instruction in the main routine from where it jumped to the

DMA routine.

4.4 IBM PC/386 Software
All inputs for the application algorithm are initially stored in an input file in
the IBM PC/386. All outputs and FDTS are also accumulated in output and FDT

files, respectively in the IBM PC/386. In addition, a 32 word control instruction
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(control AMOS) is sent to the 1553B and a 32 word status information (status AMOS)
is received from the 1553B. A 32 word buffer (control block) is maintained in the
IBM PC/386 for accumulating all desired changes in the system which is finally
copied onto the control AMOS. The control block is shown in Figure 39 which
includes commands for fault injection and for algorithm meodification by dummy nodes
and control edges. The features of the IBM PC/386 software are described below
before a detailed description of the software organization.

Major tasks of the IBM PC/386 are as follows. The code of IBM PC/386 has
to set up input and the control block for 1553B and has to collect outputs, the FDT,
and the status AMOS from the 1553B. The code also is used to check on conditions
for errors and for any changes in the number of 1750As. Depending on the number of
1750As in the system, a minimum injection interval (T) and an algorithm modification
table are selected. The modify table is used to specify how the original algorithm is
to be changed with dummy nodes and control edges to match the number of functional
units (NFU). The modify table is written onto words 6 to 31 of the control block as
commands for changes as shown in Figure 39. There is a two word instruction in the
control block or the modify table for specifying dummy nodes on an single edge or a
single control edge. For example, words 6 and 7 will specify the first algorithm
modification from the original graph. The high order byte of word 6 indicates a
command to specify whether the change is insertion/deletion of dummy nodes or a
control edge. The low order byte of word 6 and high order byte of word 7 specifies

initial (predecessor) and terminal (successor) node of the control edge or the algorithm
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edge on which dummy nodes are to be inserted or deleted. The low order byte of
word 7 is an indicator of the total number of dummy nodes.

Another feature of the IBM PC/386 code is the ability of fault injection which
is needed for testing purposes. The user can instruct to inject faults based on the
number of input data being processed. The fault conditions are stored as error
injection tables which can be accessed by a pointer EPTR (Figure 40(b)). At proper
time, an error injection table is selected and written into words 3 to 5 of the control
block as shown in Figure 39. The high and low byte of word 3 of the control block is
used to instruct AMOS to remove and insert a functional unit of specified
identification (ID), respectively from the pool of functional units. The word 4 and the
high order byte of 5 of the control block is used to instruct to remove a specified
1750A while in Execute, Self Test or Idle state (with this instruction, the specified
functional unit stops communicating and processing, abruptly). The low order byte of
word 5 of the control block is used to instruct a 1750A to commit a computation error.

Also, the IBM PC/386 has a timer which runs out if there is no new data
exchange with the 1553B in a specified time period. This timer is initialized by an
user specified value and is updated by its initial value each time a new data is
transmitted or received from the IBM PC/386. It can initiate a recovery process if a
functional unit does not respond in the Self Test state. A counter is maintained to
keep track of number of inputs being processed. This counter is used to insert faults
after a specific number of inputs are executed. After all the inputs are processed, an

end of file marker (EOF) is set. The software of IBM PC/386 is used to analyze
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FDTs for detecting errors or changing number of functional units before storing them
into the FDT file. There is an error counter for each functional unit which is
compared against a maximum tolerable value (Error_Limit). A detailed flow chart for
the IBM PC/386 software is described in Figure 40 (a) through (f). The code of IBM
PC/386 can be executed while data are read from or written to IBM PC/386 buffers by
the 1553B.

After initialization in the main routine, a loop is executed for checking
conditions of termination, recovery, updating error counters, injection of the input and
the control block, and arrival of the output or FDTs. If the Stop signal is set (an
interrupt routine sets the Stop signal following an user input as shown in Figure
40(c)), the code execution is terminated. The execution is also terminated if the timer
is out and EOF is set, the error flag is set, or the fatal error flag is set. If the timer
specified time has passed but all inputs have not been processed, this is an indicator of
a fault and the recovery process is initiated. If the error flag is set, it means either
overflow in the output or the FDT queue in the 1553B and the program is therefore
terminated. The fatal error flag is the indicator that all three inputs in a TMR voting
were different and the program is terminated.

If the input flag (T) and (R) are the same in the IBM PC/386, a subroutine
called input is executed as shown in Figure 40(b). First it is checked whether there is
a new input for processing in the input file. If there is no such input, end of file
marker (EOF) is set and the execution of subroutine input is complete. Otherwise, a

new input is transferred to the input buffer. When the counter is at a pre-specified
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number, an error injection table is selected based on the value of EPTR and is placed
on words 3 to 5 in the control block. After the fault injection, EPTR is incremented
by one and is checked against a constant Max_Tables (10 for a maximum of ten error
injection tables). When the EPTR is more than Max_Tables, it is reset to 1 so that no
more faults are injected. Whether a fault is injected or not, the input counter is
increased by 1 and the input flag is toggled before returning from the subroutine.

If the output flag in the transmit and the receive buffer are not the same
(indicating arrival of a new input), a subroutine called output is executed as shown in
Figure 40(c). Output is transferred to an output file and the output flag is toggled.

If FDT flags (T) and (R) are not the same, it is an indicator of arrival of new
EDTs in the FDT buffer. Then subroutine FDT is executed as described in Figure
40(d). For each FDT, the type of event is checked. If event is a D, the fatal error bit
is examined. If it is set, the fatal error flag is set. The next task of the code is to
check for voting error in the D event. If any, the corresponding error counters for the
respective functional units (the one which produced wrong results) are increased. If
event is a R, the check bit is examined. If the check bit is set, action bit is checked.
If the action bit is 1 (0) , the number of functional units (NFU) is increased
(decreased) by the number of changes. A new T is picked from the injection table and
a modify table is selected for the integer lower bound of the ratio (NFU/mode). The
selected modify table is transferred to parts of the control block and the change bit is
set. After the above processing of all FDTs for on-line control, FDTs are put into a

FDT file, FDT flag (T) is toggled, and the execution is returned to the main routine.
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After returning from subroutine FDT, subroutine check FUN error counters is
executed (Figure 40(e)) to check if a functional unit error counter is more than a
pre-specified value Error_Limit. If so, change is set and the corresponding functional
unit ID is put into the remove ID of the control block. Then error counter for the
functional unit which is removed is reset to zero. When this control block will reach
1750As, the corresponding functional unit will be removed from the pool of functional
units. After that execution sequence is returned to the main routine.

The next decision block in the main routine is used to check whether change
bit is set which indicate that a new control instruction is in the control block. If so
and also if control flags (T) and (R) are the same, subroutine control as described in
Figure 40(f) is executed. The control block is copied onto the control AMOS and the
control flag (T) is toggled. Then, status AMOS from receive buffer is transferred
onto the control block and the change is reset. This is done to check for any
diagnostic warning from 1750As. If Diagnostic Warning byte is nonzero, it is an
indicator that a functional unit (specified by an ID) is spending too many cycles in the
Self Test state. In that case Diagnostic Warning byte is copied into Recover in Self
Test byte in the control block and change is set for removing the functional unit.
Then execution is returned to the main routine.

The last decision block in the main routine is to reinitialize the timer in case
there was a data transfer between PC and 1553B. After that execution sequence is

returned to the beginning of the main routine loop.
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Ploce byte into Recover System
when Timer is out ond EOF has
not been reached.

Recover Table
(BYTE)

ERROR INJECTION
TABLES

Table 1
(3 Words)

Toble 2

Table 10

\

Contents of one of the tables
depending on the volue of Input
Counter is placed in words 3—5.

MODIFY TABLES
[NFU/Mode]
Table 1
(26 Words) 0 or 1
J Table 2 2
Table 3 3
Toble 4 4

if there is @ change in the number of
funclional unils (NFU) then one of the
four tobles depending on the integer
lower bound of (NFU/Mode) is written
to words 6-31.

Format of Control Block, Modify Tables,
and Error Injection Tables.
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Figure 40. IBM PC/386 flow chart, (a) Main routine.
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Subroutine input of IBM PC/386.




SUBROUTINE OUTPUT

Transfer output
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Figure 40(c).
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IBM PC/386

USER INTERRUPT
ROUTINE
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N

\
Return
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<

Subroutine output and user
interrupt routine.



SUBROUTINE FDT
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Figure 40(d). Subroutine FDT of IBM PC/386.




SUBRQOUTINE CHECK FUN ERROR COUNTERS

7

o1
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N

Error[FUN]
> Error_Limit Set
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Y v
Store FUN
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Remove ID
Check next of control
functional unit block
'
N Set error
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All functional VY zero
d
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4\

A4

Return

Figure 40(e). Subroutine check FUN error counters
of IBM PC/386.
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IBM PC/386
SUBROUTINE CONTROL

ransfer control
block to control
AMOS; Toggle
control flag(T)

Y

Copy status
AMOS to control
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2

Reset change

_
N
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byte nonzero
in the control N

block d

Copy Diag Warning

byte into Recover

in Self Test byte in
the control block.

Set change.

Y

l Return l

Figure 40(f). Subroutine control.
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CHAPTER FIVE

ATAMM SUPPORT TOOLS

In order to facilitate the prediction of performance and resource requirements in
an ATAMM defined testbed like ADM, a number of software support tools have been
developed [9, 10, 11]. The ATAMM support tools include software tools named as
Design Tool, Simulator, and Analyzer. The Design Tool is used to select an operating
point for each possible value of available resource. The Simulator is used to simulate
algorithm execution by AMOS on the ADM. Finally, the Analyzer is used to
determine algorithm performance from FDT file outputs produced either by the
Simulator or the ADM hardware. The order in which tools are used is described in
Figure 41.

The software tools are developed in Windows 2.1 running under MS-DOS on
IBM PC/386 or compatible. The programming language used for coding is C. Each
tool consists of several component pieces called windows. Each window is
constructed to solve a particular portion of the total problem. The displays of the
ATAMM support tools are divided in these windows. Several dialogue boxes and
message boxes are provided for the convenience of the user when running the tools.
All options are menu driven and minimum keyboard interaction is required. Each

display of the support tools can be selected from a main window. Any number of
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displays can appear on the screen at the same time and a display can be removed from
the screen at anytime.

The Design Tool is required for making off-line scheduling decisions and for
performance prediction of algorithms. The Design Tool obtains the required input
information from the AMG drawn using a graph editor. This window allows the user
to create, modify, and store the AMG. The most important output of the Design Tool
is the performance plane window which shows all operating points for a particular
algorithm marked graph and enables the user to choose a particular set of operating
points. Based on the user selection, the Design Tool generates a modify table which
specifies control edges, buffer sizes, performance, and resource requirements for each
operating point selected from the performance plane. A Simulator has been coded to
simulate and test AMOS. The input parameters for the Simulator are the algorithm
marked graph including all NMG transition times, the number of resources, and
system overhead times such as bus access time, bus broadcast time, etc.. The input
injection interval actually used in the Simulator and hardware systems is determined
by adding a small overhead time to the Design Tool interval to account for bus
contention time, functional unit test time, and increases in algorithm node times due to
interrupts from other functional units. The Simulator reports all events associated with
the execution of algorithm nodes for each data packet on a graph diagnostic file, called
the FDT (Fire, Data, Time) file. The Analyzer has been developed to determine
algorithm performance using the FDT file produced by the Simulator or actual

hardware. It provides the means to examine the overall system behavior to obtain
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performance measurements. The performance measurements indicate computing time,
throughput, concurrency, and resource utilization attained by the system. This tool

also provides measurements associated with system overhead.
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Figure 41. ATAMM support tools.



CHAPTER SIX

RESEARCH STATUS

There are several topics which are the subject of continuing and future
research. Significant progress has been made towards the completion of the ADM
system and it is currently partially operational (three out of four 1750As are
functioning). The ATAMM model is being validated by experiments on the ADM
testbed. A three node algorithm marked graph, shown in Figure 42, has been
successfully executed on the ADM hardware by the NASA Langley Research Center.
A number of algorithms are being analyzed by the ATAMM support tools. A space
surveillance algorithm, described in Figure 43, is to be implemented on the ADM
testbed. The results of design, simulations, experiments, and analysis of this algorithm
will be described in a later report.

The ATAMM model is being extended to include multiple concurrent
instantiations of node operations. Simultaneous execution of multiple algorithm
graphs is being investigated and an overhead model to better account for architecture
dependent parameters such as interprocessor communication and contention in
communication is being developed. Although rare in control and signal processing
algorithms, the model should be extended to include data dependent branching for

completeness. Finally, studies are needed to determine the impact of node time
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variations, where node latency is data dependent. Work is now in progress to

incorporate these features in an enhanced ATAMM model which is to be realized in

the Generic VHSIC Spaceborne Computer (GVSC) [3].
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Figure 42. An algorithm marked graph executed on the ADM.
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